If it's not what You are looking for type in the equation solver your own equation and let us solve it.
88.8=16t^2
We move all terms to the left:
88.8-(16t^2)=0
a = -16; b = 0; c = +88.8;
Δ = b2-4ac
Δ = 02-4·(-16)·88.8
Δ = 5683.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{5683.2}}{2*-16}=\frac{0-\sqrt{5683.2}}{-32} =-\frac{\sqrt{}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{5683.2}}{2*-16}=\frac{0+\sqrt{5683.2}}{-32} =\frac{\sqrt{}}{-32} $
| 16x+16=1x+13 | | 3x➗4+2=11 | | (3x+6)+x+(3x-18)=180 | | u/3-9=13 | | 6y+5y=90 | | 5x+1/6x-4=3 | | 10x-8=118 | | -4(2x-5)+x+2=-11 | | 2/5(1/3x+8/5)=3/5 | | -6.85=m/4=11 | | -10=-2g | | 1/2a+16=60 | | 0.625(x+10)−10=0 | | m/11=-626 | | 3.2x=2.6-23 | | 46°=(9b+8)° | | T=3n-7 | | t+1.35=2.75 | | r/2-6=13 | | r/2-5=13 | | 4(x2)=40 | | 2x=301/2 | | 10-3(m-2)=-11 | | 9x+x+7x=180 | | 11x+3+67=180 | | 2x-10+2=2 | | p2+4p+2=0 | | f/13=9 | | (g+3)/4+(4g)/5=5 | | 9=7-u | | 3x+5x–5=11 | | 3(n–5)+4=19 |